If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3x2 + -56x + 640 = 0 Reorder the terms: 640 + -56x + 3x2 = 0 Solving 640 + -56x + 3x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 213.3333333 + -18.66666667x + x2 = 0 Move the constant term to the right: Add '-213.3333333' to each side of the equation. 213.3333333 + -18.66666667x + -213.3333333 + x2 = 0 + -213.3333333 Reorder the terms: 213.3333333 + -213.3333333 + -18.66666667x + x2 = 0 + -213.3333333 Combine like terms: 213.3333333 + -213.3333333 = 0.0000000 0.0000000 + -18.66666667x + x2 = 0 + -213.3333333 -18.66666667x + x2 = 0 + -213.3333333 Combine like terms: 0 + -213.3333333 = -213.3333333 -18.66666667x + x2 = -213.3333333 The x term is -18.66666667x. Take half its coefficient (-9.333333335). Square it (87.11111114) and add it to both sides. Add '87.11111114' to each side of the equation. -18.66666667x + 87.11111114 + x2 = -213.3333333 + 87.11111114 Reorder the terms: 87.11111114 + -18.66666667x + x2 = -213.3333333 + 87.11111114 Combine like terms: -213.3333333 + 87.11111114 = -126.22222216 87.11111114 + -18.66666667x + x2 = -126.22222216 Factor a perfect square on the left side: (x + -9.333333335)(x + -9.333333335) = -126.22222216 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 2x*7y= | | 6x-13=2x-3 | | -7+X^2-3x=0 | | 5(x^2+3)=59 | | x^2+30x+75=7 | | W-8.7=2.32 | | 60k+60=50k+100 | | 12x^6/4x^2 | | 100(1-1/k^2)=89 | | 52-6x=16+12x | | x^2-15=-9 | | 100(1-1/k^2)=36 | | -9*-11/3 | | Y=3x^2-24x+44 | | 9x-16=4x | | y-(-6)=(9/5)(x-7) | | a^2-900a+54330.6=0 | | (y+9)/(6y^2+5y-1) | | 6x^4+15x^3-9x^2=0 | | 1x-8=3x+16 | | f(x)=-2x^4+2x^3 | | 5/3+2/3x=17/6+5/2x+1/2 | | m=-1-(-4)/-9-(-2) | | d+1/d-6*d-1/9d+9 | | 6x^3+15x^2-27x=0 | | 6x+18=2x-6 | | (7+w)(4w+9)=0 | | 9x-4(x-2)=4+20 | | y-(-3)=(7/8)(x-2) | | y=0.50x+18 | | 0,3x=x-0,5 | | y-(-5)=(8/9)(x-7) |